Display Grafico Remoto comunicante su RS-485 con protocollo Modbus RTU

Manuale Operativo – protocollo MODBUS RTU Versione Firmware: 9560

DAT9550

Tutti i dati condivisi da un modulo comunicante con protocollo Modbus RTU vengono mappati in tabelle, dove ad ogni dato viene associato un determinato indirizzo.

Ogni dato può essere di due tipi:

- "REGISTRO", costituito da 2 byte (word di 16 bit), può essere associato a ingressi o uscite analogiche, variabili, set-point, ecc...
- "COIL", costituito da 1 bit singolo, può essere associato a ingressi digitali, uscite digitali oppure a stati logici .

Un registro può anche contenere l'immagine (specchio) di più coils, ad esempio i 16 ingressi digitali di un dispositivo possono essere letti o scritti come bit, quindi singolarmente, indirizzando il coil relativo ad ogni ingresso, oppure possono essere letti o scritti come un'unica porta indirizzando il registro associato, dove ogni bit corrisponde ad un coil.

Nel protocollo Modbus, i registri ed i coil si suddividono nei seguenti banchi di indirizzi:

0xxxx e 1xxxx = Coils (bit)

3xxxx e 4xxxx = Registri (word)

Durante l'indirizzamento dei régistri quando sono utilizzate funzioni di lettura e/o scrittura dei registri e dei coils utilizzare le tabelle sotto-riportate aggiungendo 1 nel caso in cui il dispositivo venga interrogato esternamente.

E' possibile accedere ai registri interni del modulo tramite comando diretto Modbus RTU.

TABELLA REGISTRI

Registro	Descrizione	Accesso
0	Status	R/W
1	Firmware Version	RO
2		RO
3	Name	R/W
4		R/W
5	Port 1 Set (RS485 Master)	R/W
6	Address	R/W
7	Port 1 Timeout	R/W
8	Function Keys	RO
9	Actual Page	RO
10	System Flags	R/W
11	Display Options	RO
12	WatchDog Time	R/W
13	Reserved	RO
14	Reserved	RO
15	Reserved	RO
16	COM Errors	R/W
17	Gateway Mask [L-H]	R/W
18	Port 0 Set (RS485 Slave)	R/W
19	Port 2 Set (RS232 Slave)	R/W
20	Timers Enable	R/W
21÷25	Reserved	RO
26÷926	General Purpose (RAM)	R/W
927÷959	Reserved	RO
(*) 960÷1019	Retentive Registers (EEPROM)	R/W

FUNZIONI MODBUS SUPPORTATE

Function	Description						
01	Read Coil Status (0xxxx)						
02	Read Inputs Status (1xxxx)						
03	Read Holding Registers (4xxxx)						
04	Read Inputs Registers (3xxxx)						
05	Force Single Coil						
06	Preset Single Register						
15 (0F)	Force Multiple Coil						
16 (10)	Preset Multiple Registers						

TABELLA COILS

Coil (Hex)	Coil (Dec)	Description	Access
0x00A0	00160	Watch-dog Enable	R/W
0x00A1	00161	Watch-dog Event	R/W
0x00A2	00162	Power-Up Event	R/W

NOTE:

I registri ed i coils marcati nella colonna 'Accesso' con la dicitura RO sono registri di sola lettura (Read Only).

I registri ed i coils marcati nella colonna 'Accesso' con la dicitura R/W sono registri di lettura e scrittura (Read/Write).

(*) Fare attenzione all'utilizzo dei registri ritentivi in EEPROM (960-1019) in quanto non possono essere scritti in modo continuativo.

Le funzioni 01, 02 e 15 supportano lettura e scrittura fino a massimo 32 coil consecutivi.

Il numero massimo di registri che è possibile leggere attraverso le funzioni modbus 03 e 04 (vedi "Funzioni Modbus Supportate") sono: 64 Il numero massimo di registri che è possibile scrivere attraverso la funzione modbus 16 (vedi "Funzioni Modbus Supportate") sono: 64

DESCRIZIONE REGISTRI

%R0 (40001): STATUS

Questo registro di sola lettura indica lo stato del dispositivo. I valori che assume questo registro sono:

Stop $\rightarrow 101$

Halt/Step → 102

In tutti gli altri casi (Debug, Run, Release e Animate) → 255

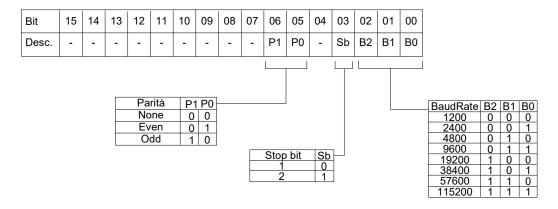
%R1/%R2 (40002 / 40003) : FIRMWARE VERSION

Campo di 2 registri di sola lettura, che contiene l'identificativo firmware dato dal costruttore.

- Default del costruttore: 9560 (ASCII)

%R3/%R4 (40004 / 40005) : NAME

Campo di 2 registri (4 byte o 4 caratteri ASCII) a disposizione dell'utente, può contenere il nome dell'apparato o una sigla che ne identifica la funzione all'interno dell'impianto. Ciascuno dei 4 byte può contenere qualsiasi valore da 0 a 255, quindi anche caratteri ASCII.


Il valore di default di questo campo contiene l'identificativo del modulo in caratteri ASCII.

- Default del costruttore: "9550" (ASCII).

%R5 (40006): PORT 1 SET (RS485 Master)

Nella parte bassa di questo registro è possibile settare i parametri di comunicazione (baudrate, parità e stop bit) relativi alla porta seriale RS485 Master (Port 1).

- Default del costruttore: 38400 bps, parità NONE, stop bit 1

%R6 (40007) : ADDRESS

Contiene l'indirizzo Modbus del modulo; sono permessi gli indirizzi da 1 a 249.

Ogni modulo connesso alla stessa rete deve avere un indirizzo univoco.

- Default del costruttore: 10

%R7 (40008): PORT 1 TIMEOUT

Indica il valore del tempo che il dispositivo deve attendere per l'arrivo della risposta da parte dei dispositivi slave collegati alla propria porta RS485 Master (Port 1). Oltre questo tempo, le eventuali risposte che arriveranno verranno ignorate. Questo valore è espresso in millisecondi.

- Default del costruttore: 100

%R8 (40009): FUNCTION KEYS

Questo registro mostra lo stato del pulsanti funzione. Ogni pulsante è associato ad un bit:

Pressione:

- → 0 = pulsante attualmente non premuto
- → 1= pulsante attualmente premuto *Latch:*
- → 0 = il pulsante non è stato premuto
- → 1 = il pulsante è stato premuto.

Bit	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Pulsante	F4	F3	F2	F1	•	•	•	•	F4	F3	F2	F1	•	•	•	•
Azione	Pressione											La	atch	•		

%R9 (40010): ACTUAL PAGE

In questo registro è possibile scrivere dei valori che consentano di visualizzare la pagina desiderata sul display:

- $\rightarrow 0 = pagina 1$
- → 256 = pagina 2
- \rightarrow 512 = pagina 3
- → 768 = pagina 4

Il numero massimo di pagine che è possibile configurare attraverso il software Dev9k 2.0 e successive è 4.

%R10 (40011): SYSTEM FLAGS

Questo registro contiene i flag di sistema: ogni bit del registro corrisponde ad un parametro, secondo la tabella sotto riportata.

Abilitazione ALLARME WATCHDOG

Abilita l'allarme di WatchDog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro %R12 (40013), scatta l'allarme di WatchDog (vedi descrizione nella sezione "Procedure"). 0 = Watchdog disabilitato

1 = Watchdog abilitato

Evento ALLARME WATCHDOG

Îndica lo stato dell'allarme WatchDog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro %R12 (40013), questo bit viene forzato a 1. Per annullare l'allarme settare questo bit a 0. Se il bit viene forzato a 1 tramite un comando dall'unità Master, sarà simulato un evento watchdog e verrà generata una condizione di allarme.

0 = Condizione normale

1 = Condizione di allarme

Evento POWER-UP

Questo bit viene forzato a 1 ad ogni accensione, indicando che il modulo è stato spento oppure resettato. Scrivendo il bit a 0 e monitorando il suo stato, è possibile sapere se è avvenuto un reset del modulo.

0 = il modulo non si è resettato

1 = reset avvenuto

Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Set	-	-	-	-	-	162	161	160	-	-	-	-	-	-	-	-
									Abilitazione evento Watchdog							

Evento Watchdog Evento Power-up

Pag 3/6

%R11 (40012) : DISPLAY OPTIONS

Attraverso questo registro è possibile impostare luminosità e contrasto del display.

E' possibile configurare questi valori anche utilizzando i pulsanti funzione presenti sul fronte del display.

Bit	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Descr.					•		rasto 15)						L	umir (0÷		à

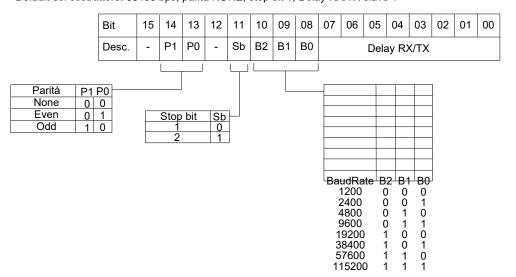
%R12 (40013): WATCHDOG TIMER

Contiene il valore del timer WatchDog, espresso in secondi. Se il WatchDog è abilitato e il modulo non riceve comandi per un tempo pari al valore contenuto in questo registro, scatta l'allarme WatchDog (vedi descrizione nella sezione "Procedure"). Il dispositivo rientra dall'allarme al primo comando ricevuto dopo la generazione dell'evento. - Default del costruttore: 10 (10 sec)

%R16 (40017): COM ERRORS

Contatore degli errori di comunicazione sulla porta Master. Il valore di questo registro viene incrementato ogni volta che viene inviato un comando Modbus sulla porta master e non viene ricevuta una risposta.

%R17 (40018): GATEWAY MASK [L-H]


In questo registro è possibile specificare l'intervallo di indirizzi modbus che il controllore può considerare validi in relazione ai comandi inviati attraverso la propria porta Master quando viene utilizzato come Gateway. Quando il controllore opera come Gateway, se viene richiesto al controllore di interrogare un dispositivo il cui indirizzo non rientra nella maschera, il comando verrà ignorato. Questo registro, opportunamente configurato, può eliminare i problemi di eco sulla rete RS485. La Gateway Mask non opera se gli indirizzi vengono interrogati direttamente dal controllore attraverso un progetto interno.
- Default del costruttore: 255 (00FF Hex)

Bit	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00	
Descr.		lı	nitial	Addr	ess l	Mask				F	inal	Addr	ess l	Mask			

%R18 (40019): PORT 0 SET (RS485 Slave) %R19 (40020): PORT 2 SET (RS232)

Nella parte alta di questo registro è possibile settare i parametri di comunicazione (baud rate, parità e stop bit) relativi alla porta seriale RS485 Slave (Port 0) e della porta seriale virtuale RS232 Slave (Port 2). I parametri di comunicazione sono in comune per entrambe le porte Slave La parte bassa del registro è riservata al Delay RX/TX della porta slave e indica il ritardo di tempo che il dispositivo attende prima di trasmettere la risposta all'unità master collegata. Il valore può essere compreso tra 1 e 255 ed è espresso in millisecondi.

- Default del costruttore: 38400 bps, parità NONE, stop bit 1, Delay RX/TX slave 1

%R20 (40021): TIMERS ENABLE

Ogni bit di questo registro è associato ad un Timer interno.

Il timer inizia a contare nel momento in cui il relativo bit viene impostato a 0. Trascorso il tempo specificato per il timer (tramite il relativo Blocco Funzione nel Dev9k), lo stesso bit viene automaticamente forzato a 1, indicando che il timer è arrivato a fine conteggio.

Bit	15	14	5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00													
Descr.		Timers														
# Timer	T7	T7 T6 T5 T4 T3 T2 T1 T0 T15 T14 T13 T12 T11 T10 T8														

%R35 (40036) → %R926 (40927) : General Purpose (RAM)

Questi tre blocchi di registri, sono aree di memoria RAM che possono essere utilizzate dall'utente per la costruzione dei propri progetti. L'utente, attraverso questi registri può effettuare operazioni matematiche, operazioni logiche oppure immagazzinare dati provenienti da dispositivi esterni con l'utilizzo delle specifiche funzioni modbus (lettura, scrittura). Questi registri possono essere scritti in modo continuativo.

ATTENZIONE: questi registri risiedono nella memoria RAM pertanto, in mancanza di alimentazione al dispositivo, i valori contenuti verranno persi.

%R960 (40961) → %R1019 (41020) : Retentive Registers (EEPROM)

Questi registri risiedono in EEPROM e per questo definiti ritentivi. In caso di mancanza di alimentazione, il valore contenuto in questi registri non verrà perso. Spesso vengono utilizzati per memorizzare costanti che vengono utilizzate in più blocchi funzione durante la stesura del progetto con il software Dev9k oppure per memorizzare valori che devono essere variati in modo <u>non</u> continuativo (da uno SCADA, HMI o PLC).

ATTENZIONE: questi registri risiedono nella memoria EEPROM pertanto non possono essere utilizzati per essere scritti in modo continuativo. Se ciò avvenisse la EEPROM verrebbe compromessa irrimediabilmente in quanto, per sua natura, sopporta limitati cicli di scrittura.

PROCEDURE

<u>UTILIZZO DELLA FUNZIONE "INIT"</u>
La funzione "INIT" consente di settare il dispositivo in configurazione di default, indipendentemente dalla programmazione software effettuata.

La funzione di INIT forza modalità RTU, parità NONE, baud rate 9600, numero di bit = 8, bit di stop = 1, indirizzo 1

- Spegnere il dispositivo.
- Collegare alla rete RS485 (slave) solamente il dispositivo da programmare.
- Connettere il morsetto INIT al morsetto V-.
- Accendere il dispositivo.
- Impostare la porta di comunicazione con i seguenti valori

. Modalità = Modbus RTU baud-rate = 9600 bps parità = None n° bit = 8 bit di stop = 1

- Il modulo risponde all'indirizzo 01 .
- Leggere o programmare le impostazioni desiderate attraverso il software Dev9k 2.0
- Spegnere il dispositivo.
- Scollegare il morsetto INIT dal morsetto V-.
- Impostare la porta di comunicazione con il baud-rate programmato
- Il modulo risponde con l'indirizzo programmato

NOTA: La programmazione di fabbrica dei moduli in fase di produzione è la seguente:

- Indirizzo: 01 - Baud-rate: 38400 bps - Parità : None - Bit di stop: 1

E' possibile verificare i parametri di comunicazione impostati utilizzando anche i tasi funzione sul fronte del display.

WATCHDOG

I moduli della serie DAT9000 sono provvisti del timer Watchdog il quale, se abilitato, fa scattare un allarme ogni volta che la comunicazione tra il modulo ed il master rimane inattiva per un tempo superiore a quello specificato.

Durante lo stato di allarme di Watchdog, il led verde "PWR" posto sul fronte del modulo inizia a lampeggiare e viene impostato a 1 il coil "Evento Watchdog". Per uscire dalla condizione di allarme, inviare un qualunque comando al dispositivo e resettare il coil "Evento Watchdog".

NAVIGAZIONE MENU E CONFIGURAZIONE

MENU' FUNZIONALI DAT9550

In qualsiasi momento è possibile accedere ai seguenti menù:

- Menù "Config": dove è possibile impostare i parametri di comunicazione del dispositivo quali Indirizzo Modbus e Baud rate di comunicazione e i parametri per la regolazione della luminosità e del contrasto per il display.
- Menù "Preset": dove è possibile impostare i valori delle variabili locali selezionate dall'utilizzatore.

CONFIGURAZIONE VIA SOFTWARE

Le pagine grafiche devono essere impostate tramite il software Dev9K versione 2.0 e successive.

Per la programmazione del dispositivo procedere come segue:

- -Collegare il cavo seriale sulla porta Modbus Slave RS-485.
- -Alimentare il dispositivo.
- -Eseguire il programma.
- -Impostare i parametri e programmare il dispositivo (riferimento manuale operativo software).

PULSANTI FUNZIONE

In modalità di visualizzazione delle pagine grafiche.

Navigazione tra le pagine grafiche

Premere il pulsante "Pagina Su" (A) per scorrere le pagine grafiche in ordine decrescente.

Premere il pulsante "Pagina giù" (Y) per scorrere le pagine grafiche in ordine crescente.

Nota: se si è caricata una sola pagina grafica, l'eventuale pressione dei pulsanti non produce alcun effetto.

Accedere ai menù di sistema.

Per accedere ai menù di sistema mantenere premuto il pulsante "**Destra**" () e premere il pulsante "**Pagina Su**" (). Appare il menù "Preset". E' possibile procedere alla modifica dei parametri di questo menù oppure accedere al menù "Config".

- Modificare i parametri del menù "Preset".

Premere il pulsante "Pagina Su" () per scorrere verso l'alto la lista dei parametri. Premere il pulsante "Pagina giù" () per scorrere verso il basso la lista dei parametri.

Quando si è selezionato il parametro desiderato premere il pulsante "F4" (Enter); verrà illuminato il primo carattere del parametro.

Utilizzare il pulsante "Pagina Su" () per scorrere in ordine crescente i caratteri disponibili oppure il pulsante "Pagina Giù" () per scorrere i caratteri in ordine decrescente .Quando si è selezionato il carattere desiderato, premere il pulsante "Destra" () o "Sinistra" () per selezionare il carattere successivo da modificare.

Premere il pulsante "F4" (Enter) per confermare le modifiche oppure premere il pulsante "F3" (Esc) per annullare le modifiche eseguite.

Al termine della modifica dei parametri premere il pulsante "F3" (Esc) per tornare alla modalità di visualizzazione delle pagine grafiche.

- Accedere al menù "Config" dal menù "Preset" .

E' possibile accedere a questo menù solo dal menù "Preset".

Con menù "Preset" attivo, premere il pulsante "F1" per accedere al menù "Config".

Questo menù mostra la programmazione reale del dispositivo per i parametri di comunicazione, di regolazione aspetto display e dei parametri di stato.

I parametri di comunicazione gestibili sono i seguenti:

Baud-rate S I: mostra quale baud rate di comunicazione è stato impostato.

Address S I: mostra quale è l'indirizzo Modbus impostato.

Nota: quando il dispositivo è in condizione di INIT i parametri di configurazione verranno forzati come Baud-rate = 9600 bps e Address = 10.

Attenzione: è possibile modificare questi parametri ma è importante che corrispondano a quelli selezionati nei menù di impostazione del software Dev9K 2.0, altrimenti la comunicazione con il dispositivo non verrà eseguita correttamente e si verificherà un errore di "Time-out".

I parametri di regolazione aspetto display gestibili sono i seguenti:

Luminosità (Bright): mostra in una scala da 1 (minima luminosità) a 15 (massima luminosità) qual'è il livello di luminosità impostato del display. Contrasto (Contrast): mostra in una scala da 1 (minimo contrasto) a 15 (massimo contrasto) qual'è il livello di contrasto impostato del display con visualizzazione positiva; in una scala da 16 (minimo contrasto) a 31 (massimo contrasto) qual'è il livello di contrasto impostato del display con visualizzazione negativa.

I parametri di stato visualizzati sono i seguenti:

Firmware: mostra il numero di firmware identificativo per il display.

Input Type: mostra il tipo di ingresso analogico impostato.

E' possibile modificare il tipo di ingresso analogico seguendo la procedura "Modificare i parametri del menù Config"

- Modificare i parametri del menù "Config".

Premere il pulsante "**Pagina Su**" (\bigstar) per scorrere verso l'alto la lista dei parametri. Premere il pulsante "**Pagina giù**" (\checkmark) per scorrere verso il basso la lista dei parametri.

Quando si è selezionato il parametro desiderato premere il pulsante "F4" (Enter); verrà illuminato il valore numerico del parametro.

Utilizzare il pulsante "Pagina Su" (A) per scorrere in ordine crescente le opzioni del parametro oppure il pulsante "Pagina Giù" (Y) per scorrere le opzioni parametro in ordine decrescente.

Premere il pulsante "F4" (Enter) per confermare le modifiche oppure premere il pulsante "F3" (Esc) per annullare le modifiche eseguite. Al termine della modifica dei parametri premere il pulsante "F3" (Esc) per tornare alla modalità di visualizzazione delle pagine grafiche.